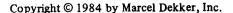
THE QUANTITATIVE EVALUATION OF A GRANULATION MILLING PREDICTION OF OUTPUT PARTICLE SIZE PROCESS III.

John J. Motzi and Neil R. Anderson School of Pharmacy and Pharmacal Sciences Purdue University West Lafayette, In 47907

ABSTRACT


Regression analysis was performed using comminution data from the previously presented Comil®/aspirin granulation Polynomial models were constructed using characterization study. mill speed, output screen size and impeller shape as independent variables. The models were used to predict the mean particle size and geometric standard deviation (σ_d) of particle size distributions resulting from the comminution of aspirin using the Comil®. The predictions were found to compare well with observed values.

INTRODUCTION

validation of a pharmaceutical manufacturing requires that each unit operation in the process be controllable within predefined operational limits. Appropriate control of a unit operation can only be established when that unit operation

915

0363-9045/84/1006-0915\$3.50/0

and its input material are fully characterized. The output of a characterized and controlled unit operation should be predictable. Comminution is an important part of the successful development of granulations which are to yield tablets that are uniform, reproducible and physically and chemically stable. Since the comminution of granulations is an essential unit operation, a given mill/material system needs to be characterized for the purpose of establishing control specifications. specifications will result in predictable comminution results.

Attempts by researchers to express comminution in terms of a general mathematical model have not been successful. There is no generally accepted theory of comminution or even a practical mathematical expression to represent the characteristics of a body Further, the individuality of each milling case of particles. requires a separate analysis for each operation. However, when studying a specific milling system one needs only to describe comminution over a relatively narrow range of conditions. first report of this series an algebraic method of describing particle size distributions was presented². The second report described the characterization of a specific mill/raw material This report describes a method by which particle size distributions can be predicted for the output of the previously characterized comminution operation.

THEORY

In order to make predictions concerning mill output it is

necessary to have a mathematical or statistical system which relates the mill variables to the resultant output particle size distribution. A previous study showed that the mill speed, output size and impeller shape must not be considered independent factors but rather in combination³. Therefore one prediction model which could be used to describe mill output is a second order polynomial with three independent variables (Eq. 1).

$$y(I,S,P) = \sum_{i=0}^{2} \sum_{j=0}^{2} \sum_{k=0}^{\infty} b_{ijk} I^{i} S^{j} P^{k}$$
 Eq. 1

where

y(I,S,P) = Predicted mill output

b = Regression coefficients

I = Impeller shape

S = Mill speed

P = Output screen size

use of Equation 1 to predict output particle requires that some measurement of mill output be designated as the independent variable y(I,S,P). Computer simulations or equations state which relate the mean particle size (μ_d) and geometric standard deviation (σ_d) of the distribution to the processing parameters will allow the design of a process which yields a predetermined particle size distribution². Therefore the two measurements which will be used as indicators of mill output are the mean particle size (μ_d) and the slope $(1/\sigma_d)$ of the resultant particle size distribution.

A second consideration in the use of Equation 1 is that it consists of 27 terms. A procedure is required to estimate the coefficients in the equation and their relative importance in predicting the output variables. The statistical procedure used for this is regression analysis. Only those terms which are shown to make statistically significant contributions to the regression should be included in the model. Those terms which do not make statistically significant contributions should then be excluded from the model. This process can be repeated in a stepwise manner until no further additions to or deletions from the model can be made4.

METHODS

Polynomial regressions were constructed for both the mean particle size (μ_d) and the slope $(1/\sigma_d)$ using a commercially available statistical computer program¹. A stepwise regression which those terms made statistically was used such that significant contributions to the model were included while those that did not were excluded. The significance levels were $\alpha \le 0.10$ for inclusion into the model and $\alpha > 0.25$ for exclusion from the The data used for the regressions was from the three replications of the previously presented Comil/aspirin granulation characterization study³.

SPSS Regression, Statistical Package for the Social Sciences, Version 8.3.5, Vogelback Computing Center, Northwestern University, Evanston, IL.

The usefulness of the polynomial models to predict resultant particle size using parameter values outside the characterization study was investigated using two new mill speeds. previously reported materials, methods and analysis³, the nine original combinations of three impeller shapes and three output screen sizes were combined with the two new mill speeds, 1200 RPM and 2100 RPM. The resulting values of $\boldsymbol{\mu}_d$ and $1/\boldsymbol{\sigma}_d$ calculated from the polynomial regressions were then compared to the values observed using the two new mill speeds.

RESULTS AND DISCUSSION

of the stepwise regression procedure for polynomial models resulted in eleven statistically significant terms describing μ_d and nine statistically significant terms describing $1/\sigma_d$. The coefficients for the polynomial models and their corresponding terms are shown in Table 1. In both cases the models consisted of substantially fewer terms than would have been the case if the full polynomial equation (Eq. 1) had been used. The observed

values of μ_d and $1/\sigma_d$ from the characterization study are compared with the values calculated by the regression equations in Table 2. The relationships between the calculated and observed values of μ_d and $1/\sigma_d$ are further illustrated in Figures 1 and 2, respectively. The results of the observed and predicted particle size analysis for the comminution of aspirin at the two new mill speeds are shown in Table 3. Graphs of the data in Table 3 for μ_d and $1/\sigma_d$

Table 1. Coefficients for Polynomial Regression Models for $\boldsymbol{\mu}_d$ and

Tour	Regression (Coefficient
Term	$^{\mu}$ d	1/o _d
Constant	-2.4821 x 10 ²	1.9558
I	0	0
I ²	0	0
S	0	0
s ²	0	0
IS	1.1820×10^{-1}	0
IS ²	0	0
I^2S	0	0
I^2S^2	0	0
Р	7.8066×10^{-1}	-1.0172×10^{-3}
_P 2	0	1.6324×10^{-7}
IP	-1.2199×10^{-1}	0
IP ²	0	0
1 ² P	0	0
I^2P^2	2.2517×10^{-6}	0
SP	-2.0431×10^{-4}	0
SP ²	0	0
s ² p	0	0
s ² p ²	0	0
ISP	-2.1564×10^{-4}	3.7741×10^{-7}
ISP ²	0	-8.4998 x 10 ⁻¹¹
IS ² P	1.9840×10^{-6}	-4.4267×10^{-11}
$1S^2p^2$	0	1.1275×10^{-14}
I ² SP	5.2997×10^{-5}	-7.2692×10^{-8}
I^2SP^2	0	1.5824×10^{-11}
I^2S^2P	-5.4273×10^{-7}	0
12S2P2	5.5774×10^{-13}	0

Observed and Calculated Particle Size Analysis for Milling of Aspirin Using the Comil®. Table 2.

1 900 1900 566.43 581.17 0.7922 0.6174 0.5932 1 900 3175 1180.23 1074.07 0.6174 0.5986 1 1500 3360 1313.91 1384.05 0.6178 0.5986 1 1500 3175 667.46 713.48 0.6689 0.7166 1 1500 3960 953.49 918.95 0.6187 0.6739 1 2400 1900 276.77 255.00 1.2676 1.1527 2 2400 3960 563.73 536.65 0.6187 0.6739 2 2400 3960 563.73 536.65 0.6187 0.7890 2 2400 3960 563.73 536.65 0.6282 0.6853 2 2400 3175 745.91 749.07 0.6286 0.7881 2 2400 3175 345.46 479.40 0.6286 0.6286 2 2400 <t< th=""><th>Impeller</th><th>Speed (RPM)</th><th>Screen (µm)</th><th>Observed^a Mean ^µd</th><th>Calculated^b Mean ⊬d</th><th>Observed^a Slope 1/o_d</th><th>Calculated^b Slope 1/ o_d</th></t<>	Impeller	Speed (RPM)	Screen (µm)	Observed ^a Mean ^µ d	Calculated ^b Mean ⊬d	Observed ^a Slope 1/o _d	Calculated ^b Slope 1/ o _d
3175 1180.23 1074.07 0.6174 3960 1313.91 1384.05 0.6378 1900 375.32 391.24 1.0151 3175 667.46 713.48 0.6689 3960 276.77 255.00 1.2689 3175 382.99 423.39 0.6187 3960 402.27 409.10 1.0080 3175 745.91 749.07 0.6542 3960 402.27 409.10 1.0080 3175 745.91 749.07 0.6542 3175 745.91 749.07 0.6542 3175 425.46 439.82 0.7483 1900 268.00 566.28 0.7483 1900 265.41 260.52 1.1926 3175 322.14 309.57 1.0264 3175 359.70 375.38 0.6967 3175 435.38 0.6967 3175 435.38 0.6999 3175 432.37 436.38 0.7908 3175 356.05 572.72	1	006	1900	566.43	581.17	0.7922	0.8737
3960 1313.91 1384.05 0.6378 1900 375.32 391.24 1.0151 3175 667.46 713.48 0.6689 3960 953.49 918.95 0.6187 1900 276.77 255.00 1.2676 3175 382.99 423.39 0.8392 3960 402.27 409.10 1.0080 3175 745.91 749.07 0.6542 3176 425.91 749.07 0.6542 3175 425.91 749.07 0.6542 3176 425.91 749.07 0.6542 3175 425.91 749.07 0.6582 3175 425.46 439.82 0.7483 1900 266.24 266.28 0.7483 1900 265.41 260.52 1.0264 3175 322.14 309.57 1.0264 3175 366.12 375.38 0.9052 3175 432.37 436.38 0.7231 3100 323.06 572.72 0.6999 3175 <t< td=""><td>-</td><td>006</td><td>3175</td><td>1180.23</td><td>1074.07</td><td>0.6174</td><td>0.5932</td></t<>	-	006	3175	1180.23	1074.07	0.6174	0.5932
1900 375.32 391.24 1.0151 3175 667.46 713.48 0.6689 3960 953.49 918.95 0.6187 1900 276.77 255.00 1.2676 3175 382.39 423.39 0.68392 3960 402.27 409.10 1.0080 3175 745.91 749.07 0.6542 3960 402.27 409.10 1.0080 3175 745.91 749.07 0.6542 3960 298.22 272.51 1.2225 3175 425.46 439.82 0.8694 3176 425.46 439.82 0.8694 3175 425.46 566.28 0.7483 3175 322.14 30.85 0.9720 3175 360.12 375.38 0.9957 3175 650.52 671.55 0.6999 3175 432.37 436.38 0.7231 3960 323.06 572.72 0.6999 3175 358.45 322.38 0.6999 3175	~	006	3960	1313,91	1384.05	0.6378	0.5986
3175 667,46 713.48 0.6689 3960 953.49 918.95 0.6187 1900 276.77 255.00 1.2676 3175 382.99 423.39 0.8392 3176 402.27 409.10 1.0080 3175 745.91 749.07 0.6542 3960 987.66 977.37 0.6258 1900 298.22 272.51 1.2225 3175 425.46 439.82 0.7483 3175 425.46 439.82 0.7483 3175 425.46 439.82 0.7483 3175 425.46 439.82 0.7483 3175 322.14 309.57 1.0264 3175 359.70 372.43 0.9052 3175 650.52 671.55 0.6967 3175 436.38 0.7231 3960 323.06 298.95 1.0366 3175 432.37 436.38 0.7231 3175 358.45 322.06 0.6999 3175 38 0.72		1500	1900	375,32	391,24	1,0151	1,0087
3960 953.49 918.95 0.6187 1900 276.77 255.00 1.2676 3175 382.99 423.39 0.8392 3960 563.73 536.65 0.8204 1900 402.27 409.10 1.0080 3175 745.91 749.07 0.6542 3960 987.66 977.37 0.6258 1900 298.22 272.51 1.2225 3175 425.46 433.82 0.7483 3960 566.28 0.7483 3175 322.4 309.57 1.0264 3175 322.4 309.57 1.0264 3175 359.70 375.38 0.9052 3175 650.52 671.55 0.6997 3175 432.37 436.38 0.7231 3960 323.06 298.95 1.0366 3175 432.37 436.38 0.7231 3960 566.05 572.72 0.6999 3175 358.45 0.7908 3175 332.06 0.7908		1500	3175	667.46	713.48	0.6689	0,7166
1900 276.77 255.00 1.2676 3175 382.99 423.39 0.8392 3960 563.73 536.65 0.8204 1900 402.27 409.10 1.0080 3175 745.91 749.07 0.6258 3960 298.22 272.51 1.2225 3175 425.46 433.82 0.8694 3960 566.28 0.7483 1900 265.41 266.28 0.7483 3175 325.41 266.28 0.7483 3960 566.28 0.7483 0.9052 3175 325.41 266.28 0.9720 3960 366.12 375.38 0.9952 3175 650.52 671.55 0.6997 3175 432.37 436.38 0.7231 3960 566.05 572.72 0.6999 3175 358.45 332.06 0.6999 3175 358.45 332.06 0.7908 3960 411.48 418.35 0.7908		1500	3960	953,49	918,95	0.6187	0.6739
3175 382,99 423,39 0.8392 3960 563,73 536.65 0.8204 1900 402,27 409,10 1.0080 3175 745,91 749,07 0.6542 3960 987,66 977,37 0.6542 1900 298,22 272,51 1.2225 3175 425,46 439,82 0.8694 3960 566,28 0.7483 1900 265,41 266,28 0.7483 1900 265,41 266,28 0.7483 3175 322,14 309,57 1.0264 3175 359,70 375,38 0.9052 1900 366,12 372,43 0.9052 3175 650,52 671,55 0.6997 3175 432,37 436,38 0.7231 3960 566,05 572,72 0.6999 3175 358,45 321,38 0.7231 3960 566,05 332,06 0.6999 3175 358,45 0.7908 3175 0.6999 317	-	2400	1900	276.77	255,00	1.2676	1.1527
3960 563.73 536.65 0.8204 1900 402.27 409.10 1.0080 3175 745.91 749.07 0.6542 3960 298.22 272.51 1.2225 1900 298.22 272.51 1.2225 3175 425.46 439.82 0.8694 3960 568.00 566.28 0.7483 1900 265.41 266.28 0.7483 1900 265.41 260.52 1.1926 3175 352.14 305.3 0.9052 3175 356.12 375.43 0.9052 3176 650.52 671.55 0.6083 3175 432.37 436.38 0.7231 3960 323.06 298.95 1.0366 3175 432.37 436.38 0.7231 3960 566.05 572.72 0.6999 3175 358.45 0.7908 3175 328.45 0.7908	-	2400	3175	382,99	423,39	0.8392	0.8653
1900 402.27 409.10 1.0080 3175 745.91 749.07 0.6542 3960 987.66 977.37 0.6542 1900 298.22 272.51 1.2225 3175 425.46 439.82 0.8694 3960 568.00 566.28 0.7483 1900 265.41 260.52 1.1926 3175 322.14 309.57 1.0264 3175 359.70 375.38 0.9052 3175 650.52 671.55 0.6967 3175 650.52 671.55 0.6083 3175 432.37 436.38 0.7231 3175 432.37 436.38 0.7231 3960 322.60 572.72 0.6999 3175 358.45 332.06 0.8697 3175 358.45 332.06 0.7908	-	2400	3960	563,73	536,65	0.8204	0.7890
3175 745.91 749.07 0.6542 3960 987.66 977.37 0.6258 1900 298.22 272.51 1.2225 3175 425.46 439.82 0.8694 3960 568.00 566.28 0.7483 1900 265.41 260.52 1.1926 3175 322.14 309.57 1.0264 3960 359.70 375.38 0.9052 3175 650.52 671.55 0.6967 3175 655.52 671.55 0.6967 3175 432.37 436.38 0.7231 3960 323.06 298.95 1.0366 3175 432.37 436.38 0.7231 3960 566.05 572.72 0.6999 3175 358.45 332.06 0.8697 3960 411.48 418.35 0.7908	2	006	1900	402.27	409.10	1,0080	0.9890
3960 987.66 977.37 0.6258 1900 298.22 272.51 1.2225 3175 425.46 439.82 0.8694 3960 568.00 566.28 0.7483 1900 265.41 260.52 1.1926 3175 322.14 309.57 1.0264 3960 359.70 375.38 0.9052 1900 366.12 372.43 0.9052 3175 650.52 671.55 0.6967 1900 323.06 298.95 1.0366 3175 432.37 436.38 0.7231 3960 566.05 572.72 0.6999 1900 292.53 332.36 0.8697 3175 358.45 332.06 0.7908	2	006	3175	745.91	749.07	0.6542	0,6863
1900 298,22 272,51 1,2225 3175 425,46 439,82 0,8694 3960 568,00 566,28 0,7483 1900 265,41 260,52 1,1926 3175 322,14 309,57 1,0264 3960 359,70 375,38 0,9052 1900 366,12 372,43 0,9052 3175 650,52 671,55 0,6967 912,32 896,42 0,6967 1900 323,06 298,95 1,0366 3175 432,37 436,38 0,7231 3960 566,05 572,72 0,6999 3175 358,45 332,06 0,8697 3175 411,48 418,35 0,7908	2	006	3960	987.66	977,37	0.6258	0.6380
3175 425.46 439.82 0.8694 3960 568.00 566.28 0.7483 1900 265.41 260.52 1.1926 3175 322.14 309.57 1.0264 3960 359.70 375.38 0.9052 1900 366.12 372.43 0.9052 3175 650.52 671.55 0.6967 1900 323.06 298.95 1.0366 3175 432.37 436.38 0.7231 3960 566.05 572.72 0.6999 1900 292.53 332.36 0.8697 3175 358.45 332.06 0.7908	2	1500	1900	298.22	272.51	1,2225	1,1619
3960 568,00 566,28 0.7483 1900 265,41 260,52 1.1926 3175 322,14 309,57 1.0264 3960 359,70 375,38 0.9052 1900 366,12 372,43 0.9720 3175 650,52 671,55 0.6967 3175 650,52 671,55 0.6083 1900 323,06 298,95 1,0366 3175 432,37 436,38 0,7231 1900 292,53 321,38 1,0797 3175 358,45 332,06 0,8697 411,48 418,35 0,7908	2	1500	3175	425,46	439.82	0.8694	0.8475
1900 265.41 260.52 1.1926 3175 322.14 309.57 1.0264 3960 359.70 375.38 0.9052 1900 366.12 372.43 0.9720 3175 650.52 671.55 0.6967 3960 912.32 896.42 0.6083 1900 323.06 298.95 1.0366 3175 432.37 436.38 0.7231 1900 292.53 321.38 1.0797 3175 358.45 332.06 0.8697 411.48 418.35 0.7908	2	1500	3960	268,00	566.28	0.7483	0,7411
3175 322.14 309.57 1.0264 3960 359.70 375.38 0.9052 1900 366.12 372.43 0.9720 3175 650.52 671.55 0.6967 3960 912.32 896.42 0.6083 1900 323.06 298.95 1.0366 3175 432.37 436.38 0.7231 1900 292.53 321.38 1.0797 3175 358.45 332.06 0.8697 3960 411.48 418.35 0.7908	2	2400	1900	265,41	260.52	1,1926	1,3041
3960 359,70 375,38 0,9052 1900 366,12 372,43 0,9720 3175 650,52 671,55 0,6967 3960 912,32 896,42 0,6083 1900 323,06 298,95 1,0366 3175 432,37 436,38 0,7231 1900 556,05 572,72 0,6999 1900 292,53 321,38 1,0797 3175 358,45 332,06 0,8697 411,48 418,35 0,7908	2	2400	3175	322,14	309,57	1.0264	1,0167
1900 366.12 372.43 0.9720 3175 650.52 671.55 0.6967 3960 912.32 896.42 0.6083 1900 323.06 298.95 1.0366 3175 432.37 436.38 0.7231 1900 292.53 321.38 1.0797 3175 358.45 332.06 0.8697 3960 411.48 418.35 0.7908	2	2400	3960	359,70	375,38	0.9052	0.8997
3175 650,52 671,55 0.6967 3960 912,32 896,42 0.6083 1900 323,06 298,95 1,0366 3175 432,37 436,38 0.7231 3960 566,05 572,72 0.6999 1900 292,53 321,38 1,0797 3175 358,45 332,06 0.8697 411,48 418,35 0.7908	က	006	1900	366,12	372.43	0.9720	0.9586
3960 912.32 896.42 0.6083 1900 323.06 298.95 1.0366 3175 432.37 436.38 0.7231 3960 566.05 572.72 0.6999 1900 292.53 321.38 1.0797 3175 358.45 332.06 0.8697 3960 411.48 418.35 0.7908	က	006	3175	650,52	671.55	0.6967	0,6511
1900 323.06 298.95 1.0366 3175 432.37 436.38 0.7231 3960 566.05 572.72 0.6999 1900 292.53 321.38 1.0797 3175 358.45 332.06 0.8697 3960 411.48 418.35 0.7908	က	006	3960	912,32	896.42	0.6083	0909*0
3175 432,37 436,38 0,7231 3960 566,05 572,72 0,6999 1900 292,53 321,38 1,0797 3175 358,45 332,06 0,8697 3960 411,48 418,35 0,7908	က	1500	1900	323.06	298,95	1,0366	1,0722
3960 566.05 572.72 0.6999 1900 292.53 321.38 1.0797 3175 358.45 332.06 0.8697 3960 411.48 418.35 0.7908	က	1500	3175	432,37	436.38	0,7231	0.7646
1900 292.53 321.38 1.0797 3175 358.45 332.06 0.8697 3960 411.48 418.35 0.7908	က	1500	3960	566,05	572.72	0,6999	0.6890
3175 358,45 332,06 0,8697 3960 411,48 418,35 0,7908	က	2400	1900	292,53	321.38	1,0797	1,0669
3960 411,48 418,35 0,7908	က	2400	3175	358,45	332,06	0.8697	0.8258
	က	2400	3960	411,48	418.35	0.7908	0.8197

Average of 3 measurements.

 $^{\mathrm{b}}$ Calculated using regression equation from Table 1.

Predicted and Observed Particle Size Analysis for Two New Mill Speeds Using the Comil®. ب Table

Impeller	Speed (RPM)	Screen (µm)	Predicted ^a Mean ^µ d	Observed Mean ^µ d	Predicted ^b Slope 1/σ _d	Observed Slope $1/\sigma_{\rm d}$
	1200 1200 1200 2100 2100 2100 2100 2100	1900 3175 3960 1900 1900 3175 3960 3175 3960 3175 3960 3175 3960	469.63 873.37 1118.27 285.26 466.70 620.42 336.80 587.57 740.69 258.95 310.11 385.68 319.13 550.31 691.68 284.10 338.39	448.25 937.57 1151.35 326.63 434.35 611.19 350.06 542.24 709.97 283.01 327.18 424.22 339.50 510.54 625.68 625.68	0.9259 0.6519 0.6349 1.1552 0.7500 1.0662 0.7422 0.7062 1.3081 0.9620 0.8590 1.0597 0.6536 0.6536 0.8347	0.9478 0.6566 0.6416 1.2917 0.8481 0.7238 1.0965 0.7005 1.0360 0.9151 1.0336 0.6783 0.6783

a Calculated using regression equation from Table 1.

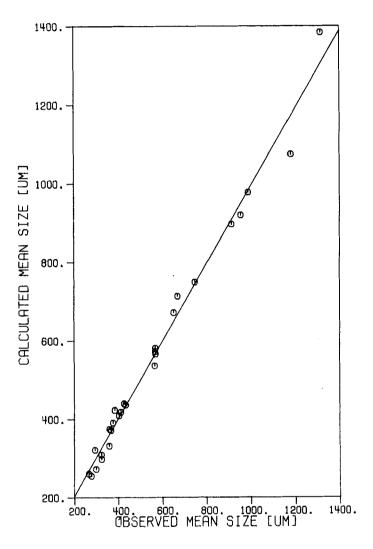


Figure 1

The relationship between the mean particle sizes (1/d) calculated from the polynomial regression model (Table 1) and the observed values of M. (Slope = .9873, R^2 = .9874).

924 MOTZI AND ANDERSON

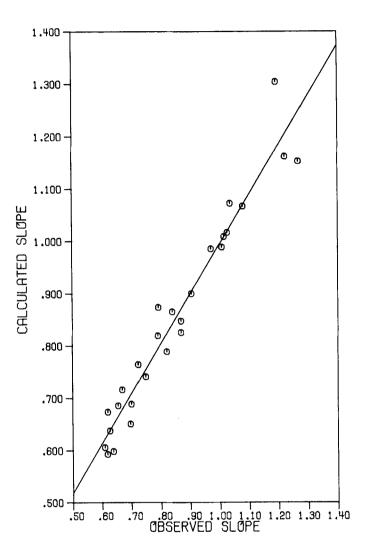


Figure 2

The relationship between the slopes $(1/\sigma_d)$ calculated from the polynomial regression model (Table 1) and the observed values of $1/\sigma_d$. (Slope = .9496, R^2 = .9462).

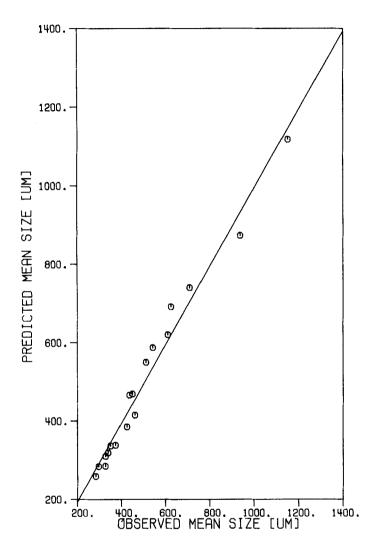


Figure 3 The relationship between the predicted mean particle size (14) calculated from the polynomial regression model (Table 1) and the observed values using the two new mill speeds (Slope = .9981, $R^2 = .9751$).

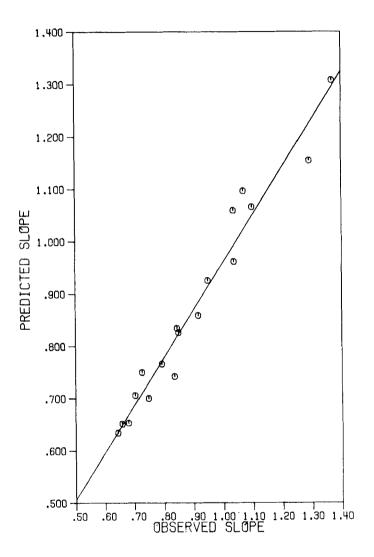


Figure 4

The relationship between the predicted slopes $(1/\mu_{\mbox{\scriptsize d}})$ calculated from the polynomial regression model (Table 1) and the observed values using the two new mill speeds (Slope = .9077, $R^2 = .9616$).

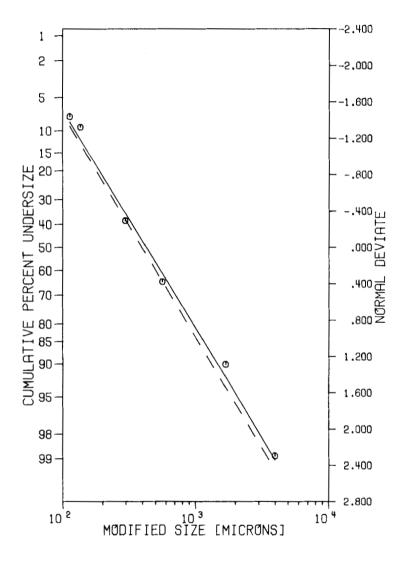


Figure 5 Log-probability plot of data from a single run using a new mill speed (I = 3, S = 1200 rpm, P = 1900 μ m). Dashed line represents values calculated from the predicted mean and slope given in Table 3. The solid line represents the observed values.

are shown in Figures 3 and 4. A typical log-probability plot of a single run is shown in Figure 5. The agreement between the predicted and observed values when new mill speeds are tested shows that the model can be used to determine how changes in the mill speed will affect mill output.

This series has shown that it is possible to characterize a granulation milling operation and predict the results deviations from a given combination of variables. Future work will concentrate on the more basic measurement of retention time of granules in the milling chamber, how it is affected by the mill variables and its effect on resultant particle size.

ACKNOWLEDGEMENT

This project was supported in part by a grant from Quadro Engineering, Waterloo, Ontario, Canada.

REFERENCES

- "Size Reduction," in Pharmaceutical Dosage R. J. Lantz, Jr., 1. Tablets, Vol. 2, H. A. Lieberman and L. Lachman. eds., Dekker, New York, 1981, pp. 77-152.
- J. J. Motzi and N. R. Anderson, "The Quantitative Evaluation 2. of a Granulation Milling Process I. Algebraic Method for Particle Size Analysis," Drug Dev. Ind. Phar., In press.
- "The Quantitative Evaluation 3. J. J. Motzi and N. R. Anderson, of a Granulation Milling Process II. Effect of Output Screen Size, Mill Speed and Impeller Shape," Drug Dev. Ind. Phar., In press.
- J. Neter and W. Wasserman, Applied Linear Statistical Models, 4. Irwin, Homewood, IL, 1974, pp. 382-386.

